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Abstract
It is demonstrated analytically that the spectrum of small-amplitude spatially uniform
magnetization excitations in an in-plane magnetized magnetic pillar with two ferromagnetic
layers coupled by dipole–dipole interaction can be approximately described by the traditional
Kittel formula with reduced saturation magnetization and effective anisotropy field. The
spectrum consists of a quasi-symmetric and a quasi-antisymmetric mode, and the apparent
reduction of saturation magnetization for the quasi-symmetric mode (�50%) is much larger
than that for the quasi-antisymmetric mode (�10%). The effect of dynamic dipolar coupling
between the nano-pillar layers could be partly responsible for the apparent reduction of static
magnetization seen in many spin-torque experiments performed on magnetic nano-pillars.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The physics of magnetic multi-layered systems is very rich,
and these systems have a lot of practical applications. It
is well known that the dipole–dipole interaction in such
systems can play a crucial role for the determination of
both the ground state (e.g., parallel/antiparallel configuration)
and the spectra of elementary magnetic excitation—spin
wave modes. Continuous multi-layered ferromagnetic thin
films have been extensively studied for more than thirty
years. Recent developments in nano-lithography allow one
to investigate magnetization dynamics in nano-patterned
magnetic structures—thin single- and multi-layered magnetic
elements with lateral sizes below 1 μm. Examples of such
structures are ordered arrays of long magnetic stripes with
micro-metric width [1, 2] and arrays of long magnetic stripes
situated above a continuous magnetic film [3].

Another class of nano-patterned magnetic systems
where dipole–dipole interactions play an important role are
nano-scale spin-torque oscillators (STO). Since the first
observations of microwave generation by STO [4], extensive
experimental work has been reported concerning the frequency
measurements of this generation in the low-amplitude regime
for a large variety of magnetic multi-layer nano-structures.

Typically, the experimentally observed dependence of the
measured frequency on the bias magnetic field can be
well described by the traditional Kittel expression for both
in-plane and perpendicularly magnetized cases, provided
that the saturation magnetization is decreased by 30–75%
depending on the system [4–8]. This apparent reduction
of the saturation magnetization in nano-patterned systems is
sometimes attributed to the effect of patterning and sometimes
to the influence of the dipole–dipole interaction between the
magnetic layers. To the best of our knowledge, however,
such an influence has never been systematically studied
theoretically, and it is unclear whether the dipole–dipole
interaction alone can lead to such a substantial apparent
reduction of the saturation magnetization.

Micro- and nano-structured ferromagnets can also be
efficiently used as microwave absorbers in monolithic
microwave integrated circuits due to the fact that their
ferromagnetic resonance (FMR) frequency can be tuned in
the range of several tens of gigahertz by applying external
magnetic fields. However, the application of large external
magnetic fields is in many cases inconvenient, and it has
been recently proposed to control the FMR frequency using
the dipolar magnetic field in patterned magnetic multi-
layers [9, 10]. This approach, again, requires a deeper
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Figure 1. Nano-pillar with two ferromagnetic layers coupled by the
dipole–dipole interaction in a constant bias magnetic field Hext,
directed along the x-axis. The thicknesses of the layers L1,2 and the
distance d between them are much smaller than the layer radii R.
The layers have the same saturation magnetization M1 = M2 = M
(4π M = 8 kOe, which is typical for permalloy).

understanding of the influence of the dipole–dipole interaction
on the spectrum of spin wave excitations in magnetic layered
and patterned structures.

In the present paper we theoretically studied the influence
of the dipole–dipole interaction on the spatially uniform
spin wave modes in an in-plane magnetized two-layered
magnetic nano-pillar, shown on figure 1. We developed a
simple analytical formalism to account for the mutual dipolar
interaction between the magnetic nano-elements which can
be used to study spin wave excitations in arbitrary patterned
magnetic systems. We calculated the frequencies of the
coupled spin wave modes in a two-layered magnetic nano-
pillar and demonstrated that these frequencies can be described
using Kittel-like expressions with a renormalized saturation
magnetization and a bias magnetic field. We demonstrated that
the dipolar interaction between the layers leads to an apparent
reduction of the saturation magnetization, but this effect in
many cases is not sufficiently large to explain completely
the observed reduction of saturation magnetization in typical
experiments with nano-pillar STOs.

2. Formulation of the problem and general formalism

We consider the magnetization dynamics of the magnetic nano-
pillar schematically shown in figure 1. The pillar consists

of two thin (thicknesses L1 and L2) circular magnetic disks
of the same radius R, separated by a non-magnetic spacer of
thickness d . We assume that the distribution of magnetization
in each layer is spatially uniform. This approximation may
not be very accurate for relatively large nano-disks (R �
100 nm), for which only full-scale micromagnetic simulations
can provide quantitatively correct results. However, in this
approximation, it is possible to obtain simple analytical
expressions for the frequencies of magnetic excitations, which
can be very useful for qualitative analysis and estimations of
the importance of dipolar coupling effects.

Although our approach is valid for any geometrical shape
of the pillar, in actual calculations we will assume that the
thicknesses of the disks L1,2 and the non-magnetic spacer d
are much smaller than the disks’ radii R. For simplicity, we
neglect crystallographic anisotropy of the magnetic layers and
assume that the saturation magnetizations of both layers are
equal, M1 = M2 = M . Also, below, we will consider only
the case of an in-plane magnetized magnetic nano-pillar with
an external magnetic field Hext applied along the x-axis (see
figure 1).

To find the frequencies of the coupled spin wave
excitations in the above described magnetic pillar, it is
sufficient to consider only the conservative dynamics of
magnetization (i.e., to neglect terms that describe energy
dissipation and excitation of the spin wave modes). In this
case the dynamics of a two-layered magnetic nano-pillar is
described by a system of two conservative Landau–Lifshitz
equations for the magnetization vectors M j ( j = 1, 2) of the
magnetic layers:

∂M j

∂ t
= γ [Heff, j × M j ], (1)

where γ ≈ 2π × 2.8 MHz Oe−1 is the modulus of the
gyromagnetic ratio and the effective magnetic fields Heff, j can
be written as

Heff, j = Hext +
2∑

k=1

H j,k. (2)

Here Hext is the external bias magnetic field and H j,k is the
magnetodipolar field, which is created by the kth magnetic
layer and acts on the j th magnetic layer. Since we are
considering only the spatially uniform excitations, the field
H j,k should be understood as a real spatially-nonuniform field
Hk(r), created by the kth layer and averaged over the volume
Vj of the j th layer:

H j,k = 1

Vj

∫

Vj

Hk(r j ) d3r j . (3)

The magnetodipolar field Hk(r), created by the spatially
uniform magnetization distribution Mk of the kth layer, can be
written in the form

Hk(r) = −4π N̂k(r)Mk, (4)

where the position-dependent demagnetization tensor N̂k(r) is
given by [11, 12]:

(N̂k(r))sp = − 1

4π

∂2

∂xs∂x p

∫

Vk

d3rk

|r − rk | . (5)
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This expression for the magnetodipolar field Hk(r) is valid
both inside and outside of the kth layer.

Using equations (3)–(5), one can write the effective
magnetic field (2) in the j th layer in the concise form

Heff, j = Hext − 4π
∑

k

N̂ jkMk, (6)

where the tensors N̂ jk are given by

N̂ jk = 1

Vj

∫

Vj

N̂k(r j ) d3r j . (7)

It is clear, that for k = j the tensor N̂ j j (self -demagnetization
tensor) coincides with the standard effective demagnetization
tensor for the j th magnetic layer. The tensors N̂ jk for j �= k
(cross-demagnetization tensors) describe the mutual dipolar
coupling between the j th and kth layers.

It should be noted that one can use equation (6) to describe
the dipolar coupling between the magnetic elements of any
shape, as long as the spin wave excitations are considered
to be spatially uniform within each element. Independently
of the shape of the magnetic elements, the self- and cross-
demagnetization tensors N̂ jk are symmetric, and their traces
are given by

Tr(N̂ jk) = δ jk,

where δ jk is the Kronecker symbol, and different cross-
demagnetization tensors are related by the expression:

Vj N̂ jk = Vk N̂k j .

These properties directly follow from the definition (7)
and, from the physical point of view, reflect the conservative
nature of the magnetodipolar interaction.

Due to the azimuthal symmetry of the system of two disks
(see figure 1), the demagnetization tensors N̂ jk are diagonal
and can be represented as follows:

N̂ jk =
(

ρ jk 0 0
0 ρ jk 0
0 0 δ jk − 2ρ jk

)
, (8)

i.e. each tensor depends only on one parameter ρ jk . Using the
definition (7), the dipolar parameters ρ jk can be expressed in
terms of six-fold multiple integrals as follows:

ρ jk = 1

8πVj

∫

Vj

d3r j

∫

Vk

d3rk

(
3(z j − zk)

2 − |r j − rk |2
|r j − rk |5

)
.

This integral can be taken over the area of the first and
the second layers after the introduction of new integration
variables, one of which is the difference between the in-plane
radius vectors of the first and the second layers and the other
one is the in-plane radius vector in one of the layers. Then, the
integral for the parameter ρ jk can be simplified to

ρ jk = 1

2π

Lk

R

∫ 1

0
dz j

∫ 1

0
dzk f

(
L j

R
z j + Lk

R
zk + d

R

)
(9)

for j �= k and to

ρ j j = 1

2π

L j

R

∫ 1

0
dz (1 − z) f

(
L j

R
z
)

(10)

for j = k. Here

f (α) =
[

2 + α2

α
K

(
− 4

α2

)
− αE

(
− 4

α2

)]
, (11)

where K (ξ) and E(ξ) are the complete elliptic integrals of the
first and second kind, respectively.

The function f (α) has a logarithmic singularity when
α → 0. Extracting this singularity and retaining the terms up to
O(α2 ln(α)) one obtains an approximate analytic expressions
for the dipolar parameters ρ jk in the case of thin disks (L1,2 �
R and d � R):

ρ jk = C

2π

Lk

R
− 1

4π(L j/R)

[
F

(
d

R

)
− F

(
d + L j

R

)

− F

(
d + Lk

R

)
+ F

(
d + L j + Lk

R

)]
(12)

for j �= k and

ρ j j = 1

2π

L j

R

[
C − ln

(
L j

R

)]
(13)

for j = k. Here C = −1/2 + ln(8) ≈ 1.58 and F(ζ ) =
ζ 2 ln |ζ |. It should be noted, that (13) can be obtained from (12)
by assuming that Lk = L j and d = −L j .

Dimensionless parameters ρ jk provide a convenient
measure for the magnetodipolar coupling between the layers
(or, in a general case, between arbitrarily shaped magnetic
elements). In the limit of very thin disks ρ jk → 0, and the
dipolar coupling between the layers vanishes.

Figure 2 shows how the parameters ρ jk depend on the
aspect ratio of the first layer L1/R. The aspect ratio of the
second layer and the distance between the layers were kept
fixed, L2/R = 1/10 and d/R = 1/25. One can see that
for the typical parameters of a nano-pillar ρ jk ∼ 0.05, which
corresponds to the amplitude of the dipolar magnetic field
equal to 4πρ jk M ∼ 400 Oe. This field is larger than the
ferromagnetic resonance linewidth in typical ferromagnetic
materials (one can also compare the dimensionless coupling
parameter ρ jk ∼ 0.05 with the dimensionless Gilbert damping
parameter αG ∼ 0.01). This means that the damping processes
cannot destroy the dipolar coupling between the magnetic
layers, and the spin wave modes excited in the structure, shown
in figure 1, indeed, should be considered as coupled spin wave
modes of the two magnetic layers.

3. The spectrum of coupled linear spin wave modes
in a magnetic pillar

We consider the case of a two-layer magnetic pillar under the
influence of a constant in-plane bias magnetic field that is
sufficiently large to guarantee that in the ground state of the
system both layers are magnetized in-plane and parallel to the
bias field. We linearize equation (1) by the substitution:

M j (t) = M[x + (m j e
iωt + c.c.)]. (14)
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Figure 2. The dimensionless dipolar parameters ρ jk , which define
the self- and cross-demagnetization tensors for the system of two thin
disks coupled by dipole–dipole interaction, as functions of the aspect
ratio of the first disk L1/R. The aspect ratio of the second disk and
the distance between the disks are fixed: L2/R = 1/10,
d/R = 1/25. Solid, dashed, and dotted lines were calculated from
the approximate analytical expressions (12) and (13). Dots indicate
values obtained from the exact expressions (9) and (10).

The first term here corresponds to the equilibrium
orientation of the magnetization vectors, whereas the second
term describes the small-amplitude (linear) spin wave modes.
The dimensionless vectors m j are orthogonal to the unit vector
x in the linear approximation. Keeping only the terms that
are linear in m j , we get the following eigenvalue problem for
the determination of the frequencies ω and profiles m j of the
coupled spin wave modes of the pillar:

iωm j = γ x×
[(

Hext−4π M
∑

k

ρ jk

)
m j+4π M

∑

k

N̂ jkmk

]
.

(15)
The above system has non-trivial solutions when

(ω2 − ω̃2
1)(ω

2 − ω̃2
2) = �int, (16)

where

�int = −4ρ12ρ21ω
2
M

(
ω2+ρ12ρ21ω

2
M−ωh,1ωh,2− ω̃2

1ω̃
2
2

4ωh,1ωh,2

)
.

(17)
Here ωM = 4πγ M , ωh, j = γ h j . The field h j is the static

magnetic field acting on the j th layer, i.e. it is the external
magnetic field plus the static dipolar field created by the other
layer:

h j = Hext − 4πρ j j ′ M (18)

where j ′ = 3 − j .
The frequency ω̃ j in (16) is the precession frequency in

the j th layer with account of only the static coupling to the
other layer:

ω̃ j = γ
√

h j [h j + 4π(1 − 3ρ j j)M]. (19)

Clearly, this expression coincides with Kittel’s formula
for the ferromagnetic resonance frequency with an external
field h j .

The term �int in (16) describes the dynamic coupling
between the two layers. Due to the prefactor ρ12ρ21, this term
vanishes when the thickness of either magnetic layer reduces to
zero. Physically, this means that a significant dynamic coupling
is possible only between the magnetic layers of comparable
volumes. To the best of our knowledge, the dynamical coupling
described by �int was neglected in all the previous theoretical
studies of magnetization dynamics in two-layered nano-pillars.

Equation (16) allows one to find an exact analytic solution
for the frequencies ω1,2 of the two spatially uniform spin
wave modes existing in the considered system. This solution,
however, is quite cumbersome. Fortunately, it is possible to
derive a relatively simple approximate expression for the spin
wave frequencies of the above modes in the form of Kittel’s
traditional formula with renormalized values of the saturation
magnetization and effective anisotropy fields:

ω1,2 = γ

√
(Hext − H̃1,2)(Hext − H̃1,2 + 4π M̃1,2), (20)

where the apparent saturation magnetization values are given
by

M̃1 =
(

1 − 3
ρ11ρ21 + ρ22ρ12 + 2ρ12ρ21

ρ12 + ρ21

)
M, (21)

M̃2 =
(

1 − 3
ρ11ρ12 + ρ22ρ21 − 2ρ12ρ21

ρ12 + ρ21

)
M, (22)

and the effective anisotropy fields are equal to

H̃1 = 0, (23)

H̃2 = 4π(ρ12 + ρ21)M. (24)

It should be noted that the frequencies (20) are the exact
solutions of equation (16) in the two limiting cases: (i) when
the layers have the same thickness, and (ii) when the thickness
of one of the layers tends to zero.

For a symmetrical system (both layers have identical
thicknesses), the mode with the frequency ω1 corresponds
to symmetric excitations (the magnetization precession in
both layers has the same phase), whereas the mode with the
frequency ω2 describes antisymmetric excitations (opposite
phases of precession in two interacting layers). When the
thicknesses of the layers are different one can still classify the
mode ω1 as a quasi-symmetric mode, and mode ω2 as a quasi-
antisymmetric mode.

The frequencies ω1,2 of the coupled linear excitations in
a magnetic pillar are presented in figure 3. One can see
that approximate expressions (20) fit the exact solution of the
secular equation (16) with high accuracy at small bias magnetic
fields. When the bias field reaches the value

H∗ = H̃2
4π M̃2 − H̃2

4π(M̃1 − M̃2) − 2H̃2

, (25)

the curves that correspond to the approximate expressions (20)
intersect, whereas the curves that correspond to the exact
solution of (16) do not (see figure 3(b)). The modes described
by the secular equation (16) change their symmetry near
this point, whereas the modes described by the approximate

4
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Figure 3. (a) The frequencies of linear excitations in a two-layered
magnetic pillar as a function of the bias magnetic field. Solid lines:
exact solutions of the secular equation (16). Triangles and dots: the
approximate expressions (20). Dashed and dotted lines: traditional
Kittel’s expressions for an in-plane magnetized ferromagnetic
film [13]: ωK ,1 = γ

√
Hext(Hext + 4π M) and ωK ,2 =

γ

√
(Hext − H̃2)(Hext − H̃2 + 4π M), respectively. (b) The

frequencies (ω − γ Hext)/2π as functions of the bias magnetic field.
Solid lines: exact solutions of the secular equation (16). Triangles
and dots: the approximate expressions (20). Parameters used for the
calculation: L1/R = 1/5, L2/R = 1/10, d/R = 1/25.

expressions (20) retain their symmetry. Above the field H∗,
the approximate solutions (20) again give a reasonably good
description of the coupled spin wave modes of a pillar.

One can see from (20) that for a sufficiently small
bias field Hext < H̃2 (H̃2 = 0.7 kOe for the spectrum
presented in figure 3) the frequency of the antisymmetric
mode ω2 becomes imaginary. This means that the ground
state corresponding to parallel magnetization of the layers
is unstable and the magnetic pillar will spontaneously relax
towards the antiparallel ground state.

As one can see from figure 3(a), both spin wave modes
of a pillar lie lower than the Kittel modes of continuous
magnetic layers, which corresponds to the apparent decrease
of the saturation magnetization. The relative decrease of
the saturation magnetization (M̃1,2 − M)/M with respect
to the saturation magnetization of a continuous (unbounded)

Figure 4. Solid lines: relative decrease of the apparent saturation
magnetization (M̃1,2 − M)/M for both quasi-symmetric and
quasi-antisymmetric modes with respect to the saturation
magnetization of an unbounded ferromagnetic film. Dotted and
dashed lines: the effective decrease of the saturation magnetization
for the first and the second isolated (uncoupled) layers, respectively.
Parameters used for the calculation: L2/R = 1/10, d/R = 1/25.

ferromagnetic film, as a function of aspect ratio of the first
layer L1/R, is demonstrated in figure 4. One can see that when
the difference in the layer thicknesses increases (which means
a weakening of the dynamic dipolar coupling between the
layers) the effective decrease of the saturation magnetization
occurs mainly due to the self-demagnetization effects. In the
region of approximately equal thicknesses of the layers, the
dynamical coupling leads to a further decrease of the apparent
saturation magnetization for the quasi-symmetric mode, but to
the increase (compared to the case of the uncoupled layers) of
the effective magnetization for the antisymmetric mode.

4. Conclusions

We demonstrated analytically that the magnetodipolar inter-
action in a two-layered magnetic pillar can be fully
described by two diagonal tensors for every layer: one
of them is the usual tensor of demagnetizing coefficients
(self-demagnetization tensor), while the other one is the
cross-demagnetization tensor which describes the dipole–
dipole interaction between the different layers. Every tensor is
fully characterized by only one dimensionless parameter which
depends only on the relative geometrical sizes of the pillar’s
magnetic layers.

The spectrum of coupled oscillations of a two-layered
nano-pillar consists of two modes with different frequencies,
which can be classified as quasi-symmetric and quasi-
antisymmetric modes. For low (high) bias magnetic fields the
frequency of the quasi-antisymmetric mode is smaller (larger)
than the frequency of the quasi-symmetric mode.

We also demonstrated that the frequencies of coupled spin
wave modes of a magnetic pillar can be described by the tra-
ditional Kittel expression with a reduced saturation magnetiza-
tion and renormalized bias field. The magnetodipolar interac-
tion leads to an apparent decrease of the saturation magnetiza-
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tion for both modes, but this decrease is more pronounced for
the quasi-symmetric mode. For the quasi-antisymmetric spin
wave mode, the apparent reduction of saturation magnetization
does not exceed 10% for realistic nano-pillar parameters, while
for the quasi-symmetric mode it can be five times larger.

We believe that the apparent reduction of the static
magnetization observed in the spin-torque experiments with
magnetic nano-pillars [4–8] can be, at least in part, attributed
to the above described effect of dynamic dipolar interaction
between the nano-pillar magnetic layers.
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